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Abstract We investigate kinetically constrained models of glassy transitions, and deter-
mine which model characteristics are crucial in allowing a rigorous proof that such models
have discontinuous transitions with faster than power law diverging length and time scales.
The models we investigate have constraints similar to that of the knights model, introduced
by Toninelli, Biroli, and Fisher (TBF), but differing neighbor relations. We find that such
knights-like models, otherwise known as models of jamming percolation, need a “No Par-
allel Crossing” rule for the TBF proof of a glassy transition to be valid. Furthermore, most
knights-like models fail a “No Perpendicular Crossing” requirement, and thus need modifi-
cation to be made rigorous. We also show how the “No Parallel Crossing” requirement can
be used to evaluate the provable glassiness of other correlated percolation models, by look-
ing at models with more stable directions than the knights model. Finally, we show that the
TBF proof does not generalize in any straightforward fashion for three-dimensional versions
of the knights-like models.

Keywords Percolation · Jamming · Kinetically constrained models · Glassy transition

1 Introduction

The puzzle of glass-forming systems has remained sufficiently elusive over the years such
that even the puzzle pieces themselves have changed shape. For example, the puzzle piece of
the lack of a growing lengthscale may now have to be modified since a growing lengthscale
can perhaps be extracted from a higher-order correlation function [1]. A less recent change
in puzzle pieces is the distinction by Angell between fragile and strong glasses, where the
excess of low-frequency vibrational models is more pronounced in strong glasses than in
fragile ones [2]. One piece of the puzzle that has remained constant over the years, however,

M. Jeng (�) · J.M. Schwarz
Physics Department, Syracuse University, Syracuse, NY 13244, USA
e-mail: mjeng@physics.syr.edu

J.M. Schwarz
e-mail: jschwarz@physics.syr.edu



576 M. Jeng, J.M. Schwarz

is the dramatic slowing down of the dynamics of the particles near the glass transition. More
precisely, a supercooled liquid’s viscosity can increase by fourteen orders of magnitude as
the temperature is decreased near a “working” definition of the glass temperature [2].

There have been many beautiful ideas developed over the years to explain this dynam-
ical slowing down. An excellent survey of these many ideas can be found in [3] and [4].
One particular idea relevant for this work that has emerged over the years is to understand
whether glassy dynamics can be understood as arising from steric constraints on the par-
ticles alone [5]. One of the simplest such examples is the Kob-Andersen model [6]. It is
motivated by the caging of particles, ultimately observed in larger scale systems such as
colloidal glasses [7, 8]. The Kob-Andersen model is a hard-core lattice gas model, but with
the constraint that a particle can only hop to an adjacent site if and only if it has less than
a certain number of neighbors, m, both before and after the move. Early simulations of the
Kob-Andersen model on the hypercubic lattice for relevant values of m appeared to find a
dynamical phase transition at a nontrivial critical density [6]. However, subsequent math-
ematically rigorous results found that the phase transition does not occur until the fully
packed state [9, 10]. This corresponds to a zero-temperature glass transition. TBF proved
this by showing that at any monomer density, there were mobile cores that could diffuse at
sufficiently long time scales.

While the hypercubic version of the Kob-Andersen model does not exhibit a finite-
temperature glass transition, the mean field version does [9, 10]. Since it is still up for de-
bate whether or not mean field is relevant for physical systems, one can ask whether or not
there exists another finite-dimensional, kinetically constrained model that exhibits a finite
temperature glass transition. While the Kob-Andersen (and the Fredrickson-Andersen [11])
models, are elegant in their simplicity, there are indeed two more involved kinetically con-
strained models in two dimensions that can be proven to exhibit a finite-temperature glass
transition. These two models have been dubbed the spiral model [12, 13] and the sandwich
model [14]. Both models exhibit an unusual phase transition in that the fraction of frozen
particles jumps discontinuously at the transition, typical of a first-order phase transition.
However, as the transition is approached from below, there exists a crossover lengthscale
that diverges faster than a power law in T − Tg . The crossover length, �, distinguishes be-
tween squares of size L � �, which are likely to contain a frozen cluster, and squares of
size L � �, for which the probability of containing a frozen cluster is exponentially un-
likely. Given this combination of a discontinuity in the fraction of frozen particles, and a
faster than power law diverging length scale, the transition has unique characteristics.1

Models such as the spiral and sandwich models are proof in principle that further explo-
ration of kinetically constrained models in finite-dimensions may be fruitful, in particular,
because should an ideal glass transition exist, it may indeed be of unusual character. More
specifically, the Edwards-Anderson order parameter should be discontinuous at the transi-
tion, yet accompanied by rapidly diverging time scales [15, 16].

To analyze these kinetically constrained models, one can map a kinetically constrained
model onto a percolation problem. More specifically, the immobile particles of the kineti-
cally constrained model are mapped to occupied sites in the percolation model. When immo-
bile particles/occupied sites percolate through the system, the system is frozen into a glassy

1The Kosterlitz-Thouless transition also exhibits unusual characteristics. There is a discontinuity in the spin
wave stiffness, or the free energy cost to applying a gradient, accompanied with an exponentially diverging
correlation length. However, there is no magnetization, or local order parameter, that goes to zero at the
transition. The jamming percolation models have a simple order parameter, the fraction of sites in the infinite
cluster.
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phase. Therefore, a glass transition is mapped to a percolation transition. However, the per-
colation problem is not the usual one where each site is initially occupied with an indepen-
dent probability ρ. Instead, the steric constraints in the kinetically constrained models map
to constraints on the occupation of sites in the percolation models, so that the occupation of
sites is now correlated, as opposed to being independent of one another. The simplest model
of correlated percolation is k-core/bootstrap percolation, in which an occupied site must
have at least k occupied neighbors [17, 18]. Occupied sites that do not satisfy this stability
requirement are removed, and this condition is applied repeatedly, until all remaining sites
are stable. This correlated percolation model can be mapped to the Fredrickson-Andersen
model, which is a lattice spin model for the glass transition where a spin can flip only if its
number of nearest neighbor down spins (mobile particles) is equal to or larger than some
integer, f , with f = Z − k + 1, where Z is the coordination number of the lattice [5, 19].

One might think that kinetically constrained models/correlated percolation systems
would be easy to numerically simulate, and that construction of rigorous proofs would be
nothing more than an interesting problem for mathematicians. However, while simulating
these systems is easy, extracting their properties in the infinite system size limit is much
harder. Just as with the Kob-Andersen model, initial numerical simulations of k-core per-
colation for certain values of k found evidence of first-order phase transitions at nontrivial
critical densities, and of second-order phase transitions in a different universality class than
normal percolation [20–22]. However, subsequent mathematically rigorous analyses found
that the critical point is ρc = 1 for those k [23–25]. Because the critical point approaches
unity very slowly in the limit of infinite system size, the simulations on finite-size systems
were misled as to the location of the true critical point, thereby highlighting the importance
of rigorous results for these models as well. For a review of k-core percolation, see [26].

There is another finite-dimensional system presumably exhibiting an unusual transition.
It is the jamming transition in repulsive soft spheres. Numerical simulations of soft spheres
show a critical point at which the average coordination number jumps discontinuously to
a universal, isostatic value. But quantities such as the shear modulus and the deviation of
the average coordination number from its isostatic value show a nontrivial power law be-
havior in the vicinity of the critical point [27–29]. Recent experiments on two-dimensional
photoelastic beads support this notion of a mixed transition [30].

Interestingly, it has been conjectured that the physics of granular systems, colloidal sys-
tems, and glassy systems are of a similar character [31]. The mean field behaviour of glassy
models also points towards this unification [32]. Furthermore, experimental evidence of
caging in another two-dimensional granular system also supports this notion [33]. The ques-
tion of finite-dimensional glassy models being quantitatively similar to the repulsive soft
sphere system is still being investigated. Certainly the spiral and sandwich models show
that, qualitatively, one can have a glassy system exhibiting an unusual finite-dimensional
transition. However, they do not appear to be in the same class as the jamming system, since
the order parameter exponent is unity just above the transition in the jamming percolation
models, but is one-half in the jamming system.

To explore the possible link between jamming and glassy systems in terms of a finite-
temperature glass transition, TBF initially introduced the knights model, a model of corre-
lated percolation similar to the spiral model [15], and called it a model of jamming percola-
tion. In fact, the spiral, knights, and sandwich models are all models of jamming percolation.
In this paper, we expand on our earlier work [14], in which we introduced the sandwich
model, by presenting the details of the proof of an unusual transition in this model. This
proof is based on modifying the proof developed by TBF in [15], where it was originally
misapplied to the knights model. The proof was later discussed in more detail in [34], and
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more recently applied to the spiral model in [13, 35]. We also introduce further general-
izations of models of jamming percolation to demonstrate that the phenomenon of a finite-
dimensional transition is indeed somewhat generic. In doing so, we show that the TBF proof
only gives a rigorous derivation of these novel properties if a “No parallel crossing” rule
holds. This rule says that two similarly-oriented directed percolation chains cannot cross
without having sites in common. The effect of this rule is that one directed percolation-like
process cannot be used to locally stabilize the other. For models such as the sandwich model,
which satisfy this “No Parallel Crossing” rule, but fail a “No perpendicular crossing” rule,
the TBF proof works only with some modification.

In this paper we address for which models the TBF proof can be used to show a glassy
transition, and for which they cannot. The question of for which models a glassy transi-
tion can be rigorously proven is important, because numerical and qualitative arguments are
often misleading, as with the already-mentioned numerical simulations of k-core percola-
tion and the Kob-Andersen model. Of course, for models in which the TBF proof fails, it
is possible that the system is still glassy, and that this can be shown by some other, as yet
undiscovered, rigorous methods. Or, one can resort to numerical methods to shed some light
on the situation. For example, while the TBF proof does not apply to TBF’s original model,
the knights model, they presented analytical/numerical arguments in [12] suggesting that the
knights model nevertheless has a glassy transition that is in the same universality class as
the spiral model. However, here, given past misinterpretations of numerical data, we focus
on extending mathematical methods initially developed by TBF, with the ultimate goal of
understanding the physics of glassy systems. We should point out that given that there are
several detailed papers on the TBF proof [13, 34], and that our work is based on modifying
that proof, we will refer to them quite often, as opposed to making this paper self-contained.
Finally, we will discuss connections between jamming percolation and force-balance per-
colation, another correlated percolation model inspired by granular systems, where analyti-
cal/numerical evidence points toward an unusual transition in finite dimensions [36, 37].

2 The Class of Models

We consider a class of models that generalizes the knights model, the earliest of the jamming
percolation models. The class of models is defined on the two-dimensional square lattice.
Initially, each site is occupied with an independent probability ρ. Each site has four neigh-
boring sets, and each set contains two sites. The four sets are labelled as the northeast, north-
west, southeast, and southwest neighboring sets. (The sites in those sets only lie in precisely
those compass directions for the knights model, but we continue to label the four sets in this
manner for all our correlated percolation models until Sect. 5.) To be stable, an occupied site
must either have (1) at least one northeast neighbor and at least one southwest neighbor, or
(2) at least one northwest neighbor and at least one southeast neighbor. All other occupied
sites are unstable, and are vacated. This culling process is then repeatedly applied—sites
that were previously stable may become unstable by earlier cullings—until all remaining
sites are stable. The neighboring sets of the original knights model introduced by TBF [15]
are shown in Fig. 1. Figure 2 shows the neighboring sets in the sandwich model, which we
introduced in [14], and Fig. 3 shows the neighboring sets in the spiral model, which TBF
introduced in [12].

In these models, stable sites must either be part of a chain running from the northeast to
the southwest, or part of a chain running from the northwest to the southeast. In the final
configuration, all sites must be stable, so any chain must either continue forever (to the
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Fig. 1 The knights model
neighbors

Fig. 2 The sandwich model
neighbors

Fig. 3 The spiral model
neighbors

boundary), or terminate in a chain of the other type (this latter case is called a “T-junction”).
Any sites left after the culling procedure must thus be connected by an infinite series of
chains (or, in a finite system, connected by a series of chains to the distant boundary), so
asking for the critical probability at which an infinite cluster first appears is the same as
asking for the minimum probability at which some sites remain unculled in the infinite size
limit.

If sites could only be stable by having northeast and southwest neighbors, then every
stable site would be part of a northeast-southwest chain on a particular sublattice—the sub-
lattice extending to the northeast of the site for the sandwich model is shown in Fig. 4.
Chains on this sublattice are isomorphic to infinite chains in directed percolation, which
has a well-studied second-order phase transition [38]. However, in these models there is an
additional mechanism by which sites can be made stable—that is, by having northwest and
southeast neighbors. Adding an extra way for a sites to be stable can only possibly depress
the critical probability, so we immediately see that for these models ρc ≤ ρDP

c .
It will turn out to be useful to divide these models into classes based on two properties.

We define a model as having “No Parallel Crossing” property if whenever two northeast-
southwest chains (or two northwest-southeast chains) intersect, they must have sites in
common—we abbreviate this a “property A.” And we define a model as having a “No
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Fig. 4 A sublattice in the
sandwich model

Fig. 5 (a) Failure of property A (“No Parallel Crossings”) in the knights model. (b) Failure of property B
(“No Perpendicular Crossings”) in the knights model. (c) Failure of property B in the sandwich model

Table 1 Properties satisfied for
the knights, sandwich, and spiral
models

Model Property A Property B

Knights No No

Sandwich Yes No

Spiral Yes Yes

Perpendicular Crossing” property, or property B, if whenever a northeast-southwest and
northwest-southeast chain intersect, they must have sites in common. Table 1 shows which
properties each of the three models possesses. Examples of where the properties fail for each
model are shown in Fig. 5.

Our analysis here is based to a large extent on the claimed TBF proof of a glassy transition
for the knights model [15, 34]. Their proof consisted of two parts. First, they claimed to show
that the critical point of the knights model is exactly the same as that for directed percolation.
Second, once this was done, they were able to use well-known results on directed percolation
(assuming a well-tested conjecture about anisotropic rescaling in directed percolation) to
show that this model has a glassy transition—specifically, they were able to find structures
with a finite density at the critical point of directed percolation, and to show that just below
this critical point, the crossover length and culling times diverged.

Our analysis of this more general class of models shows that the TBF proof that ρc = ρDP
c

is only valid for models satisfying property A; so it works for the sandwich and spiral mod-
els, but fails for the knights model. The second part of their proof, showing a glassy tran-
sition, implicitly assumes property B. The spiral model exhibits property B and hence the
TBF method of proof carries through.2 However, we show that the proof can be modified to
work for models that fail to have property B. The spiral and the sandwich models thus have
provably glassy transitions, while the knights model does not.

2This observation was kindly pointed by C. Toninelli and G. Biroli in [35] after an initial draft of our paper
was made available making the opposite claim.
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3 Identifying the Critical Point

We sketch the TBF proof that ρ
knights
c = ρDP

c , which will let us understand why property A
is sufficient, and most likely necessary to the result. The key to the TBF proof is to show
that voids (clusters of empty sites) of particular shapes have a finite probability of growing
forever. For example, for the diamond-shaped void in the sandwich model, shown in Fig. 6,
if the key site labelled y is vacant, it will trigger the removal of all the sites marked with
stars, increasing the void size by one. (The corresponding void for the knights model appears
as Fig. 1c of [15].) If this process repeats forever, with such key sites repeatedly removed,
this void will grow to infinity.

The TBF proof for the knights model is based on the claim that the key sites of the
knights model, located at the corners of octagonal voids of size L, can only be stable if part
of a directed percolation chain of O(L). Once this claim is granted, the rest of the proof
is straightforward. For ρ < ρDP

c , such long chains are exponentially suppressed, and thus
for a large void, the vertices at the corners of the void are exponentially likely to be culled.
Summing up the relevant probabilities, this results in a finite probability that the void will
grow to infinity. For an infinite lattice, it is thus certain that there will be at least one void
that grows to infinity, showing that all sites are culled below ρDP

c . Since ρ
knights
c ≤ ρDP

c , this
is supposed to show that ρ

knights
c = ρDP

c .
The claim that sites at the corners of voids can only be stable if part of a long chain

of O(L) is only valid for models with property A. A counterexample to this claim for the
knights model can be seen in Fig. 7. This counterexample also shows why property A is
necessary and sufficient for this claim to be valid. To be stable, the site must be part of a
northeast-directed chain; pick the lowest northeast-directed chain coming out of the corner
site y. If that chain stops before reaching length O(L), it must terminate in a northwest-
southeast chain. Since the northeast chain is not as long as a wall of the void, the new
southeast-directed chain will eventually hit the void (thus resulting in the culling of all
chains, and the corner site y), unless it hits a T-junction. That new T-junction results a sec-
ond northeast-southwest chain, which will eventually reach the first northeast chain, as in
Fig. 7. For models with property A, the two chains will intersect, contradicting the original
assumption that we chose the lowest northeast-directed chain out of y. Thus, by contradic-
tion, for models with property A, the first northeast chain must be O(L) for y to be stable,
and it indeed follows that ρc = ρDP

c .
What about for models such as the knights model, that lack property A? Is it possible

that despite this counterexample to the claim, ρ
knights
c is actually equal to ρDP

c , for some
other reason? While we do not have a mathematically rigorous proof that ρ

knights
c �= ρDP

c , we
present an argument that the two are almost certainly unequal. We present our arguments in
the context of the knights model, but they generalize to other models that lack property A.

Consider the substructure in Fig. 8. All sites in it are stable under the knights model
culling rules, except for the two sites at its ends, and those sites will become stable if the

Fig. 6 A void in the sandwich
model. If the site y is unstable, its
removal will cause the culling of
all the sites marked with stars.
The corresponding void for the
spiral model is a diamond,
regular in shape
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Fig. 7 A counterexample to the
claim in [15, 34] that for y to be
stable it must be part of a long,
uninterrupted chain to the
northeast. Large solid circles are
occupied sites, and large empty
circles are vacant sites. All sites
in the void are vacant. All other
sites can be either occupied or
unoccupied. Arrows are drawn
from each occupied site to
indicate the neighboring sites that
make it stable

Fig. 8 A substructure that
depresses the critical point of the
knights model. Numbers indicate
sites in the same sublattice

substructure is attached between two northeast-southwest chains. Furthermore, there is no
northeast-southwest chain internal to the substructure connecting the two ends. The sub-
structure is internally stabilized by northwest-southeast links.

This means that the substructure can act as a “rest stop.” Northeast-southwest chains can
have breaks in their paths, connected by this substructure. Just below ρDP

c , long northeast-
southwest chains almost form an infinite structure. They are almost linked, so a few extra
connections, through these substructures, should create an infinite cluster even below ρDP

c .
So we expect that ρ

knights
c < ρDP

c .
We can make the argument more formal by considering the following modification of the

directed percolation problem, which we call jumping directed percolation. As with normal
directed percolation, we occupy sites on the square lattice with probability ρ, and connect
each site with directed bonds to its neighbors to the north and east. However, now we define
an additional way for sites to be connected. We divide the lattice into blocks of size 9 × 9,
and for each block, if the two hollow squares of sites shown in Fig. 9 are occupied, we with
probability s connect the two hollow squares with a directed bond from the southwest square
to the northeast square. The critical point of this model is a function of s: ρ

Jump
c (s).

By repeating Fig. 8 three times, to create diamonds connecting sublattice #1 to #2 to #3
and then back to #1, we obtain a structure that links two separated diamonds on sublattice
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Fig. 9 A configuration in
“jumping directed percolation”
that receives an additional
connection with probability s

#1, through sites in the other two sublattices. So if we restrict ourselves to looking at sites in
sublattice #1, and the directed percolation structures on that sublattice, sites that appear dis-
connected may be connected by these sites in sublattices #2 and #3. The structure obtained
by repeating Fig. 8 three times has 24 sites in sublattices #2 and #3, each of which is occu-
pied with probability ρ, and has 24 sites in sublattice #1. The sites in sublattice #1 in this
repeated structure map onto the occupied sites in Fig. 9. So with s = ρ24, s gives the prob-
ability of having appropriate “hidden” occupied sites in sublattices #2 and #3 that connect
and make stable the two hollow squares. Infinite chains in the jumping directed percolation
model are infinite stable clusters in the knights model, and thus ρ

knights
c ≤ ρ

Jump
c (ρ24) ≤ ρDP

c .
However, since jumping directed percolation is just directed percolation with an extra

connection process, it is reasonable to expect that ρ
Jump
c (s) < ρDP

c for all s > 0, implying
ρ

knights
c < ρDP

c . While this argument is not mathematically rigorous, it is strongly suggestive,
particularly when we recall previous results on enhancements in percolation by Aizenman
and Grimmett [39]. Their work showed that if percolation on a lattice was “enhanced” by
adding, for specified subconfigurations, extra connections or occupations with probability s,
this would strictly decrease the critical probability, for any s > 0, so long as the enhancement
was essential. Essential enhancements were defined as those such that a single enhancement
could create a doubly-infinite path where none existed before. See [39] for a more rigorous
and precise statement of the results on enhancements, and [40] for a general discussion
of enhancements. The results of [39] were obtained for undirected percolation, so are not
directly relevant for the jumping directed percolation model considered here, but they are
analogous enough to strongly suggest that ρ

Jump
c (s) < ρDP

c for all s > 0. It is difficult to see
how such adding such a new route for paths to infinity could leave the critical probability
completely unchanged.

4 Property B

For models satisfying property A, we have ρc = ρDP
c , but we still need to check that the TBF

proof that the transition is glassy (discontinuous with a diverging crossover length) is valid.
The TBF proof of a glassy transition implicitly assumes that the knights model has prop-

erty B. For example, to show discontinuity, they construct a configuration that has a finite
density at ρDP

c —see Fig. 2b of [15]. This figure, and others like it, implicitly assume prop-
erty B, because they are based on drawing overlapping rectangles in independent directions,
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Fig. 10 The modification in the
TBF discontinuity structure for
models failing the “No
Perpendicular Crossing” rule
(property B)

and assuming that if paths in these intersecting rectangles cross, they must stabilize each
other (form a T-junction). The resulting frozen structure is shown on the left side of Fig. 10.
However, if a model lacks property B, the paths can cross without stabilizing each other.

The knights model does not satisfy property A, so whether or not it satisfies property B
is a moot point. But what about the sandwich model, which satisfies property A, but not
property B? The TBF proof as it stands is not immediately valid in these cases. Nevertheless,
it turns out that for such models, the TBF proof can be made to work by a modification of
their structures.

The basic idea of the modification is as follows. The TBF proof of a glassy transition is
based on drawing structures consisting of sets of overlapping rectangles, showing that there
is a sufficiently high probability (finite for the proof of discontinuity, and approaching 1
for the proof of diverging crossover length) that each rectangle has a spanning path in the
desired direction, and then using property B to conclude that the intersecting paths form
a frozen cluster. For models that lack property B, we use the same figures as in the TBF
proof (e.g. Figs. 2a and 2b of [15]), but pick the rectangle sizes large enough that there is
a high probability that each rectangle has multiple spanning paths (O(L1−z) for a rectangle
of O(L)), each occurring in a disjoint parallel subrectangle. Then in each place where the
TBF proof assumes a T-junction based on property B, we will have a northeast (northwest)
path crossing many northwest (northeast) paths. The probability that no T-junction occurs
turns out to decay exponentially with the number of northwest (northeast) paths. In Fig. 10
we show how the discontinuity structure of the TBF proof (from Fig. 2a of [15]) is modified
by this procedure.

To implement these ideas, we need the following proposition, which says that sufficiently
large rectangles of size aL × L are very likely at the critical point to have many chains
connecting the sides of length aL:

Proposition 1 For L → ∞ there exists c > 0 and r > 0 s.t.

μ
ρc

L,aL(¬∃ 	rL1−z
 disjoint northeast occupied clusters,

occurring in disjoint parallel subrectangles,

connecting the sides of length aL)

≤ exp(−cL1−z).

Here z is the dynamical exponent, which has been numerically found to be approximately
0.63 in two dimensions [41]. In [15], TBF used the fact that a single large rectangle of
size aL × L was very likely to have a single crossing path. This proposition uses similar
arguments to find O(L1−z) paths.

Proof We divide the box of size L by aL into aL1−z parallel disjoint subrectangles, each
of size L × Lz. Assuming the conjecture of anisotropic scaling in directed percolation, each
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subrectangle has a probability q > 0 of having a path connecting the two sizes of length Lz,
contained within that subrectangle. The expected number of crossings is qaL1−z, and for any
r < qa the probability of having less than rL1−z crossings decays exponentially in L1−z. �

The TBF proof of discontinuity shows that for certain structures of rectangles, there is a
nonzero probability that each rectangle has a suitable “event,” and that, assuming property B,
the existence of each event (a rectangle crossing) results in a stable structure at the critical
point. Now, with our modified proposition, each “event” is the presence of multiple crossings
(in disjoint parallel subrectangles) in each rectangle, rather than single crossings.

Without property B, this does not guarantee a frozen cluster. However, we see in Ap-
pendix A that when a northeast (northwest) path crosses n northwest (northeast) paths, in
n disjoint subrectangles, the probability of not forming a single T-junction decays exponen-
tially in n. This is physically obvious, since for large subrectangles, the probability of each
T-junction in each subrectangle is essentially independent; however, since the probabilities
are not truly independent, more work is needed to make this rigorous. The details of the
proof are relegated to Appendix A. More generally, the arguments in Appendix A show that
we can treat the probabilities of T-junctions in different subrectangles as independent, when
establishing an upper bound on the probability. We will use this throughout this section to
multiply such probabilities as if they were independent.

Assuming property B, the TBF proof shows that the probability of having suitable events
in each rectangle is nonzero at the critical point. We now need to show that, even without
property B, this results in a finite probability of an appropriate set of T-junctions. In the
TBF discontinuity structure, shown in Fig. 2b of [15], there are two infinite sequences of
rectangles, Ri , i ≥ 1. Each pair of rectangles Ri is twice as large as the rectangles Ri−1.
In [15], the “suitable events” needed for a stable spanning structure are crossing paths in
each rectangle. We modify this so that the “suitable events” are those of Proposition 1—
each Ri should have at least k2i(1−z) crossings parallel to its long direction, where k is some
positive constant.

The arguments in Appendix A show that this results in a T-junction with probability
(1 − (1 − r)k2i(1−z)

), for some positive r and k.
Starting at the origin, the probability of forming appropriate T-junctions off to infinity

can then be seen to be

(
1 − (1 − r1)

k21−z)2
∞∏

i=2

(
1 − (1 − r2)

k2i(1−z))2
, (1)

for some positive r1, r2, and k. This product converges to a positive number, so the transition
is proven to be discontinuous (subject to assumption of the well-tested conjecture of an
anisotropic critical exponent in directed percolation).

The proof of the diverging crossover length can be made to avoid the assumption of
property B by a similar modification of the TBF structures. Again, we begin by repeating
the TBF structures, with the set of parallel rectangles in Fig. 2a of [15]. In that picture, if
every rectangle has a spanning path, and the paths all intersect, there will be a spanning
frozen cluster. TBF consider the case where each rectangle has sides of order the directed
percolation parallel correlation length, ξ||. They then show that c3 and c4 can be chosen
such that if the system size is L < c4ξ|| exp[c3ξ�(p)1−z], the probability that each rectangle
is occupied by a spanning cluster approaches 1 as L → ∞, ρ → ρ−

c . If property B were to
hold, this would result in T-junctions that would create a frozen structure, and show that the
crossover length diverges as ρ → ρ−

c .
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We no longer have property B; but instead, by using Proposition 1, we can choose the rec-
tangle sizes such that each rectangle is occupied by “many” spanning clusters (with “many”
defined by Proposition 1). Given this, we can start at an arbitrary rectangle, and then work
our way out, looking for T-junctions to create a spanning frozen structure. We will only fail
to create a frozen structure if at some point we reach intersecting rectangles where one span-
ning path in one rectangle crosses many spanning paths in the other rectangle, but without
creating a T-junction. By the arguments in Appendix A, the probability of this occurring
decays exponentially in cL1−z for some c > 0. So even with O(L/ξ||)2 intersections, the
probability that we ever fail in this process goes to 0 as L → ∞ and ρ → ρ−

c , and we are
essentially guaranteed a frozen structure. This shows that the crossover length diverges as
we approach the critical point, with the same lower bound that TBF found.

5 Pinwheel Model and 8-Spiral Model

The models we have discussed so far have two possible ways in which a site can be stable,
and varying neighboring relations for the culling relations. However, we can also define
generalizations in which there are three or more ways in which a site can be stabilized. For
example, for the Pinwheel model, shown in Fig. 11, the condition for a site to be stable
is that it (1) have neighbors in both the sets A and B, or (2) have neighbors in both the
sets C and D, or (3) have neighbors in both the sets E and F. This gives a site three possible
directions for stabilizing chains. Similarly, Fig. 12 shows a model in which there are four
possible directions for a site to be stable, such that there is an extra “or”: for the sets G
and H. We denote this model the 8-spiral model.

Despite the extra ways in which sites can be made stable, the TBF proof of a glassy tran-
sition is still valid, because property A holds for both the pinwheel model and the 8-spiral
model. That is, in both of these models if two A-B chains (or two C-D chains, or two
E-F chains, or two G-H chains) cross, they must have sites in common. This turns out to
be sufficient to show that there will be a void that grows forever in the infinite system limit.

For the sandwich and spiral models, we needed to show that a stable site at the corner
of a diamond-shaped void has to be part of a directed percolation-like chain (DP-like chain)
of order the size of the void. For the pinwheel model, we consider hexagonal voids, and
show that stable sites at the corners of these voids must be “associated” with a long DP-like
chain, where “associated” will be defined by the construction below. Then, just as for the
sandwich and spiral models, for ρ < ρc , long DP-like chains are exponentially suppressed,

Fig. 11 Neighboring relations
for the pinwheel model
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Fig. 12 Neighboring relations
for the 8-spiral model in which
there are four processes by which
a site can be made stable. For a
site to be stable it must have
neighbors in A and B, or C
and D, or E and F, or G and H

Fig. 13 The top of a hexagonal
void in the Pinwheel model, and
examples of the A-B and
C-D chains discussed in the text

giving voids a finite probability to grow forever, showing that the infinite system is empty
for ρ < ρc .

Consider the site y at the corner of the hexagonal void in Fig. 13. Look at all A-B chains
coming out of y, and pick the lowest possible chain; in other words, look for successive
A neighbors, and if a site has two possible A neighbors, pick the lower one. If that chain
reaches the dashed line in Fig. 13, we have a DP-like chain of order the size of the void,
and are done. Otherwise, this A-B chain must terminate either in a C-D chain, or an E-F
chain. If it terminates in an E-F chain, that chain must terminate in a C-D chain, which
must then cross the original A-B chain. (Note that the E-F chain cannot terminate in an
A-B chain, since by the “No Parallel Crossing” rule, the new A-B chain would intersect the
first A-B chain, and contradict our assumption that we chose the lowest A-B chain coming
out of the site y.) So if the A-B chain coming out of y does not reach the dashed line, it must
either terminate in a C-D chain or cross a C-D chain (the latter case is shown in Fig. 13). Pick
the lowest of all the C-D chains that cross or intersect our A-B chain. This C-D chain must
reach the dashed line, using the same logic as before (if it terminated in an A-B chain, that
would intersect the first A-B chain, and contradict the assumption that we chose the lowest
A-B chain coming out of y; while if it terminated in an E-F chain, that E-F chain would
have to turn into either an A-B or C-D chain before reaching the void, again resulting in a
contradiction). Since the A-B and C-D chains that we have constructed cross, and together
include both y and the dashed line, at least one of the chains must be of order the size of the
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void. A similar construction can also be used for the 8-spiral model using a diamond-shaped
void.

Having established where the critical point is, we follow TBF, and as before consider
an infinite sequence of two types of rectangular regions, R1,2 (see Fig. 10), one of which
contains AB paths, and the other of which contains EF paths. (Any pair of types of paths—
AB/CD, AB/EF, or CD/EF—are permissible, as are any of the 6 possible pairs for the
8-spiral model.) Again, the sequence is constructed such that the AB paths and the EF paths
are mutually intersecting with a frozen backbone that contains the origin, and the TBF proof
simply carries through with the additional modification we have introduced for models that
do not obey property B. All in all, since having more neighboring relations gives more ways
for an occupied site to be stable (without depressing the DP critical point), the TBF con-
structions of discontinuous percolation structures at the critical point simply carry through.
Just as for the sandwich model, the TBF proof needs to be modified to deal with the lack of
property B. One needs at least two intersecting rectangular regions in which the probability
for two “transverse” blocking directions each undergoing a directed percolation transition
independently is nonzero.

6 Models in Higher Dimensions

Consideration of the “No Parallel Crossing” rule shows that for higher-dimensional gener-
alizations of the knights model, the TBF proof cannot be generalized in a straightforward
manner to show provably glassy transitions. We will show that the “No Parallel Crossing”
rule never holds, so the critical point is always depressed below that of directed percolation.

Specializing to three dimensions for convenience, let A = {�a1, �a2, �a3} consist of three
linearly independent 3-vectors, and C = {�c1, �c2, �c3} consist of three linearly independent
3-vectors with A �= C. Also, define B = {−�a1,−�a2,−�a3} and D = {−�c1,−�c2,−�c3}. For an
occupied site �r to be stable, it must have either (1) occupied neighbors from both �r + A and
�r + B or (2) occupied neighbors from both �r + C and �r + D. The first condition we denote
the A-B condition, the second, the C-D condition. Then, just as for the sandwich and spiral
models, there are two directed percolation processes by which a site can be made stable
(A-B chains and C-D chains), and one might think that for an appropriate set of neighboring
relations the TBF proof could be used to show a glassy transition.

However, it turns out that because these models never satisfy the “No Parallel Crossing”
rule, the critical point is always depressed below that of three-dimensional directed percola-
tion, and the TBF proof cannot be directly generalized for these models.

Property A says that two chains running in similar directions cannot cross without having
sites in common. For two-dimensional models, this can be required by the topology and
neighboring relations. However, in three dimensions, the topology always makes it easy
for two directed chains to miss each other, and so no three-dimensional generalization of
property A can be satisfied, regardless of the neighboring relations. Furthermore, if the two
chains miss each other, then the buttressing of each type of chain does not occur and the
resulting transition may be continuous.

If we only enforced the A-B condition, then we would just have three dimensional di-
rected percolation (modulo finite clusters). However, for the model defined above, there is an
extra way to be stable, resulting in ρc < ρDP

c . Consider a finite structure with the following
properties: (1) all occupied sites are stable under the culling rules except occupied sites �ri

and �rf , (2) �ri has an occupied neighbor in �r + B and �rf has an occupied neighbor in �r + A,
and (3) there is no AB path connecting �ri and �rf . This structure is analogous to Fig. 8 for
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the knights model. We relegate to Appendix B the proof of the existence of such a finite
structure.

By the arguments in Sect. 3, we expect these structures to depress the critical point below
that of three-dimensional directed percolation. They will make stable some occupied sites
that were unstable under just the A-B condition. Slightly below ρDP

c , the system is about
to percolate using the A-B condition alone. The substructures act as extra, local bonds,
joining up long A-B paths and pushing the system above the critical point, just as in the
knights model. Again, arguments similar to these have been made rigorous by Aizenmann
and Lebowitz in the case of undirected percolation [25].

While a rigorous proof along the lines of the TBF proof cannot be done for three-
dimensional models, this does not mean that such three-dimensional models fail to have
a glassy transition. Further numerical and analytical studies of three-dimensional models,
similar to the one conducted in [12] for the knights model, would be useful.

7 Discussion

The discovery of a two-dimensional percolation transition, where the sudden emergence of
a discontinuous backbone coincides with a crossover length diverging faster than a power
law, is recent, and of great interest for glassy systems, jamming systems, and phase transi-
tions in general. Unusual transitions have been found previously in mean field systems of
a slightly different nature, but not in finite dimensions. And while the finite-dimensional
transition is discontinuous, it is not driven by nucleation, as with ordinary discontinuous
transitions, but instead by a scaffolding of many tenuous directed percolation paths occur-
ring simultaneously to form a bulky structure. We have shown that property A is required
for the proof that ρc = ρDP

c , but property B is not. All that is needed to prove that the transi-
tion is discontinuous (once ρc = ρDP

c is established) is a finite probability for two transverse
percolating structures to intersect, to prevent each other from being culled. Therefore, one
can construct other models, such as the pinwheel and 8-spiral models, that exhibit a similar
transition in two dimensions. The phenomena is not as specific as might seem at first glance.
However, such a buttressing mechanism in dimensions higher than two is more difficult
because it is more difficult for percolating paths to intersect and form a buttressing, bulky
structure.

Models like the knights model, where ρc is most likely less than ρDP
c , provide physicists,

mathematicians, and computer scientists with a motivation to study new models of correlated
percolation—models that are not isomorphic to directed percolation, but quite possibly in
the same universality class. Once this avenue is pursued further, one can then easily extend
the class of models for which a finite-temperature transition can be rigorously shown. To
begin, it would be interesting to consider a directed percolation model in two dimensions
where the number of nearest neighbors is greater than two. For example, if the number of
nearest neighbors was increased to four, would the percolation transition still be in the same
universality class as directed percolation? If so, as is presumably the case, then one could
construct a jamming percolation model with sets larger than two sites. These jamming per-
colation models would then be isomorphic to the next-neighbor directed percolation models
and then one could use results from directed percolation to prove a percolation transition.
The results on the knights model in [12] suggest that even though the TBF proof cannot be
directly applied, further development of mathematical tools should be able to enlarge this
new universality class even beyond the scope of this paper.
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There exists another class of correlated percolation models called force-balance percola-
tion. The first model in this class was defined in [36]. Other force-balance percolation mod-
els are currently being constructed and studied [37]. The force-balance percolation models
differ from the jamming percolation models in that (1) the sets, such as A, B, etc., are over-
lapping and (2) the “or” between pairs of sets is changed to “and”. Given these differences,
the methods of proof used here cannot be easily applied. Numerical results indicate that the
transition is discontinuous with a nontrivial “correlation length” exponent, indicating that
the transition may not the garden-variety discontinuous transition. The force-balance mod-
els are perhaps less artificial in that they mimic force-balance by requiring that an occupied
site (i.e. a particle) have occupied neighbors to its left and right, as well as its top and bot-
tom, in order to be stable. However, little has been rigorously proven about them. To make
progress along these lines would be useful.

What about the lack of finite stable clusters in models of jamming percolation? Recent
numerical work on another correlated percolation model, k-core percolation, with k = 4 on
the four-dimensional hypercubic lattice, appears to exhibit an ordinary, discontinuous per-
colation transition driven by nucleation [42]. Finite clusters exist in this model, unlike in the
jamming percolation models. Therefore, in the jamming percolation models, there can be
no surface tension between the percolating and nonpercolating phases, which is typical of
an ordinary discontinuous transition. If finite clusters are allowed in a correlated percolation
model, one might guess that the unusual nature of the transition would be destroyed. How-
ever, finite clusters, other than individually floating particles, do not appear in the jamming
transition of granular particles. Otherwise, the packing would not be static. So it is unclear
whether the existence of finite clusters pertains to the jamming of granular particles. This is
also the case for the glass transition.

If more of an analogy between jamming and models of jamming percolation is to be
made in finite dimensions (setting aside the matter of the critical dimension of jamming), a
model where the fraction of sites participating in the infinite cluster increases smaller than
linearly just above the transition must be found. Furthermore, the existence of a jamming
percolation model with a universal jump in the number of occupied sites at the transition that
“naturally” emerges as opposed to being externally imposed [43], is yet another necessary
quest if a jamming percolation model of jamming is to be found.

Finally, models of correlated percolation, such as the sandwich and spiral models, tell
us that there do indeed exist kinetically constrained models of glassy dynamics that exhibit
unusual phase transitions in finite dimensions. Therefore, this avenue of exploration for un-
derstanding possible finite-temperature glass transitions in finite-dimensions remains open.
Since our work helps to clarify which jamming/correlated percolation models can be rig-
orously shown to have an unusual finite-temperature glass transition with a particular set
of properties, other models exhibiting possibly other unusual behaviours can hopefully be
more easily developed in the near future.

Appendix A: Proof that Multiple Crossings Are Exponentially Unlikely to Avoid
Creating T-junctions

In this appendix we justify the claim made in Sect. 4 that given n crossings, the probability
that no crossing results in a T-junction decays at least exponentially in n. This would be
immediately true if each crossing resulted in an independent probability of a T-junction.
So what we show is that these crossings, by occurring in disjoint subrectangles, can be
effectively treated as independent (in establishing an upper bound on the probability).
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Fig. 14 Multiple crossings,
resulting in at least one
T-junction with high probability.
Crossings are drawn with open
circles to emphasize that these
crossings may or may not result
in sites common to the crossings
paths

Fig. 15 The only configuration
in the sandwich model where
northeast and northwest chains
cross, but the northeast part of the
northeast chain is not stabilized
by a T-junction. If the site
marked with a star was occupied,
this would create a T-junction

The relevant picture is shown for n = 4 in Fig. 14. There are n disjoint rectangles, la-
beled by i, 1 ≤ i ≤ n, each of which has at least one northwest spanning path. We call this
event H , and conditionalize upon the occurrence of H . Each northwest path must cross the
northeast spanning path, but without property B, these crossings do not necessarily result in
T-junctions, where by a T-junction we mean specifically a site in common between the paths
that stabilizes the northeast part of the northeast path. Let Gi be the event that at least one
crossing in rectangle i forms a T-junction.

Now for a configuration with ¬Gi , look at the sites in the vicinity of the crossing (if
there is more than one crossing, we choose one by an arbitrary ordering of possible crossing
locations). Restricting ourselves first to the sandwich model, Fig. 15 shows the only way
that Gi can fail to happen. The site labeled by a star must be vacant, and if that site is made
occupied, the new configuration is in Gi . So a local change in the vicinity of the crossing
can always create a T-junction. This local change induces a mapping fi from the set of states
with ¬Gi to a subset of the set of states with Gi . The mapping is one-to-one onto this subset,
and for any state S with ¬Gi , the probability of the configuration fi(S) is ρ/(1 − ρ) times
the probability of the configuration S, where ρ is the site occupation probability. Thus

μρ(¬Gi | H) ≤ 1 − ρ

ρ
μρ(Gi | H). (A1)

More generally, if we want to consider other variations of the knights model that lack
property B, we need only that for any crossing without a T-junction, some local configura-
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tion of changes in a bounded region around the crossing can create a T-junction. The induced
mapping can be many-to-one, so long as the “many” is bounded (which follows automati-
cally from the restriction that the configuration changes occur in a bounded region around
the crossing). This will more generally give

μρ(¬Gi | H) ≤ cμρ(Gi | H), (A2)

for some 0 < c < 1.
Since the configuration changes only take place within a rectangle i, they do not affect

whether or not we have Gj for j �= i, and we can write the above inequality for a state where
we specify whether these other Gj occur. For example, for i = 3 we might write

μρ(G1 ∩ ¬G2 ∩ ¬G3 ∩ G4 · · · ∩ Gn | H)

≤ cμρ(G1 ∩ ¬G2 ∩ G3 ∩ G4 · · · ∩ Gn | H), (A3)

with the same c as above. This can be intuitively thought of as treating the different prob-
abilities of forming T-junctions as independent. Repeatedly using (A3) in different subrec-
tangles, we find that

μρ

(
n⋂

i=1

¬Gi | H
)

≤ 1

(1 + c)n
. (A4)

We are thus exponentially unlikely to have no T-junctions.

Appendix B: Existence of Finite Structures in Three-Dimensional Models

In this appendix we prove the existence of the finite structures discussed in Sect. 6. Be-
fore giving the formal proof, we sketch the qualitative idea behind the construction of these
structures. In the structure for the knights model, shown in Fig. 8, there are two parallelo-
grams consisting of A-B (northeast-southwest) chains. The two parallelograms are parallel
to each other, and are connected and stabilized by C-D (northwest-southeast) chains. In two
dimensions, such a figure can only be constructed by having some chains cross each other,
and this results in a long A-B chain connecting the two ends, unless the model violates
property A. However, in three dimensions, the C-D chains can always be run in a direction
independent of the plane of the A-B parallelograms, so such a substructure can always be
formed, regardless of the neighboring relations.

We now formalize this argument. Recalling that �a1, �a2, �a3, and �c1 are four three-
dimensional vectors, with the first three being linearly independent and �c1 not equal to any
of the first three, there must exist n �= 0, and m1, m2, m3, with at least two nonzero mi , such
that

3∑

i=1

mi �ai = n�c1. (B1)

If all of the mi are positive, then it is easy to make the desired structure. Let �F ≡∑3
i=1 mi �ai = n�c1. Then make the structure in Fig. 16, where each of the vectors �F rep-

resents an A-B chain of length
∑3

i=1 mi , and nci represents a C-D chain of length n. This
structure has the desired properties. If all of the mi are negative, we simply replace C with
D and use the same argument.
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Fig. 16 The structure in the case
where �c1 = ∑3

i=1 mi �ai with all
mi > 0

Fig. 17 A substructure

If some mi are positive, and some mi are negative, we redefine the mi , and rewrite (B1)
as

3∑

i=1

mi �ai =
3∑

i=1

m̃i �ai + n�c1, (B2)

where n, all mi , and all m̃i , are positive, and for any i, either mi or m̃i is zero. Then define
�F ≡ ∑3

i=1 mi �ai and �G ≡ ∑3
i=1 m̃i �ai . �F and �G are both nonzero and linearly independent.

We can now make the structure shown in Fig. 17. The vectors 2 �F and 2 �G represent A-B
chains of length 2

∑3
i=1 mi and 2

∑3
i=1 m̃i . In these chains every site is stable by the A-B

condition except for �ri and �r1. The vectors n�c1 are chains of length n in which every site is
stable by the C-D condition.

Next, since {�a1, �a2, �a3} form a complete basis for three-dimensional space, and { �F, �G}
are only two vectors, there exists a vector �H = ∑3

i=1 pi �ai , with all pi > 0, such that �H
is linearly independent of { �F, �G}. (Note: this is where the three-dimensional case differs
from the two-dimensional case. For models such as the spiral and sandwich models, the
two vectors �F and �G already span the space.) We can then make a second copy of Fig. 17,
displaced from the original by �H , as shown in Fig. 18.

We can now check that in Fig. 18 all sites except the start and end sites, �ri and �rf , are
stable under the culling rules, and that �ri and �rf have neighbors from B and A, respectively.
It remains to check that there is no A-B chain connecting �ri to �rf in this structure. There is
no obvious such chain, but depending on the vectors �ai and �c1, it is possible that there are
some sites in the �F , �G, and �H chains by chance are separated by a vector �ai , inadvertently
forming an A-B chain between �ri and �rf . However, if this is the case, we can create new
larger structure, simply by multiplying n, all mi , all m̃i , and all pi by the same multiplicative
constant. The structure thus grows larger, while the vectors �ai stay the same, so for a suffi-
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Fig. 18 The full structure with
the desired properties

ciently large multiplicative constant, it is impossible for the different chains in the structure
to be adjacent by �ai connections. We thus have a structure with the desired properties.
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